手写大模型组件之Group Query Attention,从 MHA,MQA 到 GQA
2024年12月8日大约 3 分钟
- GQA(Group Query Attention)的优点:效果损失小,推理的时候可以加速(来自于kvcache小,内存取数少)。
- 仔细阅读 MHA, MQA 和 GQA的区别,就会发现 MHA 和 MQA 都是 GQA 的特殊表达形式
- 三者可以用同一套代码,只需要修改【GQA】代码里面的
nums_key_value_head
参数就可 nums_key_value_head
设置等于 1 就是 MQAnums_key_value_head
设置等于nums_head
就是 MHA
- 三者可以用同一套代码,只需要修改【GQA】代码里面的
如果不喜欢看文字的同学可以查看 B站 或者 YouTube 视频。
multi-head self-attention
备注:也可以直接由 GQA 中修改参数得到。但是本代码更完整一些
import math
import torch
import torch.nn as nn
class MultiHeadAttention(nn.Module):
def __init__(self, hidden_dim, nums_head) -> None:
super().__init__()
self.nums_head = nums_head
# 一般来说,
self.head_dim = hidden_dim // nums_head
self.hidden_dim = hidden_dim
# 一般默认有 bias,需要时刻主意,hidden_dim = head_dim * nums_head,所以最终是可以算成是 n 个矩阵
self.q_proj = nn.Linear(hidden_dim, hidden_dim)
self.k_proj = nn.Linear(hidden_dim, hidden_dim)
self.v_proj = nn.Linear(hidden_dim, hidden_dim)
# gpt2 和 bert 类都有,但是 llama 其实没有
self.att_dropout = nn.Dropout(0.1)
# 输出时候的 proj
self.o_proj = nn.Linear(hidden_dim, hidden_dim)
def forward(self, X, attention_mask=None):
# 需要在 mask 之前 masked_fill
# X shape is (batch, seq, hidden_dim)
# attention_mask shape is (batch, seq)
batch_size, seq_len, _ = X.size()
Q = self.q_proj(X)
K = self.k_proj(X)
V = self.v_proj(X)
# shape 变成 (batch_size, num_head, seq_len, head_dim)
q_state = Q.view(batch_size, seq_len, self.nums_head, self.head_dim).permute(
0, 2, 1, 3
)
k_state = K.view(batch_size, seq_len, self.nums_head, self.head_dim).transpose(
1, 2
)
v_state = V.view(batch_size, seq_len, self.nums_head, self.head_dim).transpose(
1, 2
)
# 主意这里需要用 head_dim,而不是 hidden_dim
attention_weight = (
q_state @ k_state.transpose(-1, -2) / math.sqrt(self.head_dim)
)
print(type(attention_mask))
if attention_mask is not None:
attention_weight = attention_weight.masked_fill(
attention_mask == 0, float("-1e20")
)
# 第四个维度 softmax
attention_weight = torch.softmax(attention_weight, dim=3)
print(attention_weight)
attention_weight = self.att_dropout(attention_weight)
output_mid = attention_weight @ v_state
# 重新变成 (batch, seq_len, num_head, head_dim)
# 这里的 contiguous() 是相当于返回一个连续内存的 tensor,一般用了 permute/tranpose 都要这么操作
# 如果后面用 Reshape 就可以不用这个 contiguous(),因为 view 只能在连续内存中操作
output_mid = output_mid.transpose(1, 2).contiguous()
# 变成 (batch, seq, hidden_dim),
output = output_mid.view(batch_size, seq_len, -1)
output = self.o_proj(output)
return output
attention_mask = (
torch.tensor(
[
[0, 1],
[0, 0],
[1, 0],
]
)
.unsqueeze(1)
.unsqueeze(2)
.expand(3, 8, 2, 2)
)
x = torch.rand(3, 2, 128)
net = MultiHeadAttention(128, 8)
net(x, attention_mask).shape
Group Query Attention
备注:以下代码省略了 attention_dropout attention_mask等情况的处理,真实实现过程中需要考虑。
import torch
import torch.nn as nn
import math
# 忽略了 attention_mask, attention_dropout;
class GroupQueryAttention(nn.Module):
def __init__(self, hidden_dim, nums_head, nums_key_value_head):
super().__init__()
assert hidden_dim % nums_head == 0 # 可以整除
assert nums_head % nums_key_value_head == 0 # N 个 query head 为一组
self.hidden_dim = hidden_dim
self.nums_head = nums_head
self.nums_key_value_head = nums_key_value_head
self.head_dim = hidden_dim // nums_head
# 初始化 qkv o
self.q_proj = nn.Linear(hidden_dim, nums_head * self.head_dim) # out feature_size (nums_head * head_dim)
# k v out shape (nums_key_value_head * head_dim)
self.k_proj = nn.Linear(hidden_dim, nums_key_value_head * self.head_dim)
self.v_proj = nn.Linear(hidden_dim, nums_key_value_head * self.head_dim)
self.o_proj = nn.Linear(hidden_dim, hidden_dim) # input_size nums_head * head_dim
def forward(self, X, attention_mask=None):
# X shape (batch, seq, hidden_dim)
batch_size, seq, _ = X.size()
# qkv projection
q = self.q_proj(X) # (batch, seq, hidden_dim)
k = self.k_proj(X)
v = self.v_proj(X)
# attention_weight 目标shape 是 (batch, nums_head, seq, seq)
q = q.view(batch_size, seq, self.nums_head, self.head_dim)
k = k.view(batch_size, seq, self.nums_key_value_head, self.head_dim)
v = v.view(batch_size, seq, self.nums_key_value_head, self.head_dim)
# 关注: nums_head 和 nums_key_value_head 的关系
q = q.transpose(1, 2) # (b, nums_head, seq, head_dim)
k = k.transpose(1, 2) # (b, nums_key_value_head, seq, head_dim)
v = v.transpose(1, 2) # (b, nums_key_value_head, seq, head_dim)
# k v repeat; (广播操作)
k = k.repeat_interleave(self.nums_head // self.nums_key_value_head, dim=1)
v = v.repeat_interleave(self.nums_head // self.nums_key_value_head, dim=1)
attention_score = (q @ k.transpose(2, 3)) / math.sqrt(self.head_dim)
attention_weight = torch.softmax(attention_score, dim=-1)
# (attention_mask 忽略) # 可以看前面的视频
output = attention_weight @ v # (b, nums_head, seq, head_dim)
# output projection 变成 (b, seq, hidden_dim)
output = output.transpose(1, 2).contiguous()
final_output = self.o_proj(output.view(batch_size, seq, -1))
return final_output
# 测试
x = torch.rand(3, 2, 128)
net = GroupQueryAttention(128, 8, 4)
net(x).shape
Multi Query Attention
由于 MQA 是 GQA 的一种特殊形式,因此只要在参数设置的时候将 nums_key_value_head = 1 就是 Multi Query Self-Attention。
REF
视频链接:TODO